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Abstract. This paper studies a scheduling problem based on a point-to-point network, in which automotive 

parts are delivered with a truck fleet between each single supplier and an original equipment manufacturer 

(OEM). The objective is to minimize the total transportation cost for the part supply and the inventory cost at 

the OEM. An integer programming model is proposed to describe the truck scheduling problem. In order to 

quickly search for good solutions to this NP-hard problem, two heuristic rules and one genetic algorithm are 

developed. Numerical experiments are conducted to evaluate the performance of the proposed heuristic 

solution procedures. It shows that the proposed heuristics can solve the scheduling problem effectively and 

efficiently. Moreover, the genetic algorithm significantly outperforms the two rule-based heuristics. 
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1. Introduction  

Nowadays the strategy of mass customization has been extensively applied in the automotive industry. It 

inevitably results in an increasing product variety that can be observed at many original equipment 

manufacturers (OEMs). Consequently, just-in-time part logistics becomes one of the imperative challenges 

in today’s automotive production. OEMs need to effectively coordinate thousands of parts and suppliers, a 

great number of different vehicles and equipment, and hundreds of logistics workers to satisfy the part 

requirements from the final assembly lines.  

The external part logistics involves all activities that supply parts from an external supplier’s facility to 

the OEM’s plant. Parts are produced at the respective supplier and shipped to the OEM plant typically by 

truck. In general, there are three major pathways for transporting automobile parts that are delivered 

frequently in small lot sizes, namely, point-to-point network, milk-run system, and cross docking system [1]. 

 

Fig. 1:  A point-to-point network consisting of one OEM and five suppliers.  

In a point-to-point network (as shown in Figure 1), also referred to as a direct shipping network, each 

single supplier directly ships its parts to the OEM plant. Direct shipping is especially useful for transporting 

large and valuable parts with high variety such as car seats. These parts are often sorted by suppliers in the 

same order just as defined by the production sequence, which can not only reduce inventories but also ease 

the logistics burden on assembly workers at the OEM [2]. In addition, note that the suppliers in the network 
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are normally located very close to the OEM plant since frequent small-lot deliveries are needed. 

The scheduling and routing of trucks serving a point-to-point network in the context of just-in-time (JIT) 

production has to consider the trade-off between shipping cost for the part supply and inventory cost at the 

OEM. This is different from the classical routing problem, in which the primary objective is to minimize the 

number of vehicles or minimize the total cost related to transportation such as travel distance and time of 

vehicles [3]. There is abundant literature addressing the vehicle routing problem (VRP). As the classical 

VRP was proved to be NP-hard [4], researchers developed various heuristic algorithms (e.g., tabu search [5], 

ant colony optimization [6], particle swarm optimization [7], and genetic algorithm [8]), aiming at finding 

high quality solutions rapidly. However, very few works discussed the truck scheduling associated with a 

point-to-point delivery network, which can be considered as a special VRP with time windows.  

Point-to-point shipping networks were mainly studied from the viewpoint of strategy or supply chain 

management [9-11]. Thus, the goal of determining the optimal long-term supply policies was normally 

adopted. To the best of our knowledge, only two papers studied direct shipping from the viewpoint of 

scheduling and routing. Emde and Zehtabian [12] developed heuristics to solve the problem of scheduling 

transportation tasks in a one-supplier/multiple-customer network given a finite planning horizon. Gschwind 

et al. [13] investigated the scheduling problem in a direct shipping network with multiple suppliers and 

customers, and proposed an exact branch-cut-and-price algorithm to solve it. In fact, although direct shipping 

is widely used in many industries, there are still many problems regarding vehicle scheduling and routing 

that remain untackled. 

This paper investigates a new truck scheduling problem for automobile part supply via a point-to-point 

network consisting of one customer (i.e., OEM plant) and multiple suppliers, which has not been studied 

explicitly yet. The objective is to minimize the total transportation and inventory costs. It has three 

contributions as follows. 

1) An integer programming model is presented to describe the truck scheduling problem based on a 

direct shipping network. The model considers not only the conventional constrains regarding task 

assignment but also the restrictions on parts delivery. The objective is to minimize the total 

transportation and inventory costs. 

2) Heuristic approaches including two simple rules and one genetic algorithm (GA) are presented, 

aimed at quickly finding good solutions to the truck scheduling problem. 

3) Computational experiments are conducted to test the performance of the proposed solution 

procedures, which are shown to be effective and efficient. Moreover, the GA algorithm significantly 

outperforms the simple rules.  

The rest of this paper is organized as follows: Section 2 gives a detailed description and a mathematical 

formulation of the truck scheduling problem. In order to solve the problem rapidly, two heuristic rules and 

one GA are proposed in Section 3. Computational results based on designed problem instances are displayed 

in Section 4. Finally, Section 5 concludes the paper. 

2. Problem Description 

Consider an automotive OEM plant that is supplied with N parts by external suppliers via a point-to-

point network. The transportation tasks are undertaken by a fleet of K trucks. The truck scheduling problem 

decides on the allocation of each transportation task, and the schedule of each truck, so that the total 

transportation and inventory costs are minimized.  

The following decision environment is assumed: 

 Each part is supplied by a specific supplier and each supplier delivers one part only.  

 The consumption rate of each part is constant and known in advance. 

 All trucks in the fleet are identical and thus have the same carrying capacity. 

 While executing a task, the truck starts from the terminal at the plant, picks up the part in the 

associated supplier’s facility, and returns to the plant. 

 Full truckload shipment is used whenever possible in order to save the transportation cost. 
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 The planning horizon is equally divided into multiple time slots. Trucks can only leave the plant at 

the beginning of a time slot. 

 The transportation cost for a part is only determined by the number of trips to deliver this part. 

 The inventory holding cost of each part is known. 

Using the notations listed in Table 1, the truck scheduling problem under study can be depicted by the 

integer programming model as follows. 

Minimize 
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Objective (1) aims to minimize the total transportation cost for the part supply and inventory cost at the 

OEM plant. Constraints (2) and (3) jointly ensure that an actual shipping task (i.e., yijk > 0) can be issued only 

if the associated assignment has been determined (i.e., xijk = 1). Constraints (4) guarantee that each vehicle 

can be assigned at most one transportation task simultaneously. Constraints (5) and (6) collectively ensure 

that a transportation task cannot be assigned to a truck until the last task assigned has been finished. 

Constraints (7) require that the quantity of part (say i) associated with any transportation task cannot exceed 

the truck loading capacity for this part. Constraints (8) ensure that the total demand for each part in the 

planning horizon is satisfied. Constraints (9) specify the number of transportation tasks for each part, which 

determines the transportation cost for part supply. It implies that the first term representing the transportation 

cost in (1) can be deleted. Constraints (10) and (11) jointly ensure that the decision variable yijk can only be 

one of the three values, i.e., 0, Capi, ri, where Capi is the truck loading capacity for part i and ri the quantity 

of part i that cannot be delivered by a full truckload. Constraints (12) depict the recursive relationship 

between two adjacent inventories Iij and Ii, j–1. Inequalities (13) and (14) impose the restrictions on the 

inventory levels for each part. Specifically, at the end of each time slot, the inventory of a part (say i) should 
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be no less than the consumption rate. Moreover, the inventory at the end of the planning horizon should be 

no less than 0. Constraints (15) and (16) define two decision variables xijk and yijk. Finally, three auxiliary 

binary integer variables are defined in constraints (17) and (18). 

As mentioned earlier, the truck scheduling problem under study is a special case of vehicle routing 

problem, which is claimed to be NP-hard [4]. Thus, in order to deal with the computational intractability and 

provide real-time good solutions, approximation approaches need to be developed. 

Table 1:  Notation 

Notation Description 

Parameters  

N Total number of parts (and suppliers), index i 

J Total number of time slots in the planning horizon, index j, j1, j2 

K Total number of vehicles, index k 

Capi Maximum number of units of part i per truckload 

Di Total demand of part i in the planning horizon 

ti Transportation cost per trip for delivering part i 

hi Inventory holding cost of part i per time slot 

ci Number of units of part i consumed in one slot 

Ti Number of time slots required per trip to transport part i (to and from supplier i) 

M A very big integer 

ri 
Number of units of part i that cannot be delivered by a full truckload,       
⌊      ⁄ ⌋ 

Iij Inventory level of part i at the end of the jth time slot 

Decision variables  

xijk 
Binary decision variable: 1, if a task for transporting part i at the beginning of the jth 

slot is assigned to vehicle k; 0 otherwise 

yijk Number of units of part i to be delivered by vehicle k at the beginning of the jth slot 

       Binary auxiliary variables  

    
 ,     

  Two binary auxiliary variables  

 

3. Heuristic Solution Procedures 

Aiming at seeking for good solutions rapidly, this paper presents two simple rule-based heuristics, 

namely, the fixed route rule and the sequential arrangement rule. Besides, a GA procedure is developed to 

solve the truck scheduling problem.  

3.1. The fixed route rule 

Under this rule, each vehicle serves one or multiple suppliers (parts) designated in advance. While in 

scheduling, a truck, say k for transporting part i, is dispatched once the inventory (of part i) needs to be 

replenished. When there are multiple requests for different parts simultaneously, the earliest due date rule 

(EDD) is applied. 

3.2. The sequential arrangement rule 

According to this rule, the task assignment is made in order of time slots. Within each slot, unassigned 

tasks are allocated in the order of index numbers of parts to available trucks arbitrarily. This process ends 

when all the tasks are assigned. 

3.3. Genetic algorithm 

The GA solution procedure is a biologically inspired metaheuristic and optimization technique. 

Originally introduced by John Holland in the 1970s, GA has been successfully applied to a wide range of 
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real-world problems of significant complexity. This paper presents a GA to solve the truck scheduling 

problem based on a point-to-point network. The general procedure of the proposed GA is depicted as follows. 

 

Algorithm 1: Genetic Algorithm 

1: Initialize population 

2: Check the feasibility of initial solutions 

3: While iteration < iterationmax 

4:   Calculate the fitness of individuals 

5:   Select parental population 

6:   Perform crossover operations 

7:   Perform mutation operations 

8:   iteration = iteration + 1 

9: End 

10: Return the best solution 

1) Chromosomes 

A chromosome (individual) in Algorithm 1 corresponds to an actual schedule of all trucks in the fleet. It 

can be represented by a K×J matrix S. The element Sij (k = 1, …, K; j = 1, …, J) in S is determined by  

     

{
 
 

 
 
                                              
                               
                                           
                              
                                          
                             

 (19) 

Figure 2 illustrates a schedule of two trucks undertaking 3 tasks for shipping 3 parts (i.e., 1, 2, and 3), 

respectively. The relationship between Skj and the decision variable for task assignment xijk is represented by 

      {
             

              
.  (20) 

Fig. 2: A schedule involving two trucks with five time slots. 

2) Fitness function 

The fitness function measures the quality of the solutions found by the GA. For the trucking scheduling 

problem, the objective function value Z is used in the fitness function as represented by 

         {
                           
                                 

,  (21) 

where M is a very large number. Note that since the truck scheduling problem is a minimization problem, 

a solution with a smaller fitness value is considered a better one. 

3) Population initialization   

Chromosomes in the population can be generated by repeatedly the run following initialization procedure. 

a) Generate a tentative schedule: For each row (say k) of the matrix S, assign an integer v (0 ≤ v ≤ N) 

randomly to the element Skj in ascending order of j (j = 1, …, J). If v is positive, then the values of the next Tv 

–1 elements are set to –1, which means the truck is executing a task for delivering part v and not available 

yet. After all elements are determined, check whether or not the minimum number of deliveries for each part 

is satisfied. Regenerate S if the check fails. 

b) Determine transportation tasks: For each trip in S for part i, randomly determine the actual quantity q 

(i.e., yijk) loaded in the truck based on the demand Di. For extra tasks assigned in S, the corresponding q is set 
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to 0. After all tasks are determined, check whether or not the inventory constraints for each part are satisfied. 

Return to a) if the check fails.  

c) Finalize the schedule: Change the values of elements with a corresponding load 0 to 0. 

4) Genetic operations 

a) Selection: A binary tournament selection strategy is employed. Specifically, for each individual in 

the population, randomly choose another one and keep the solution with the smaller objective value. In 

addition, after the tournament selection, an elite strategy is applied. Replace the m individuals with the worst 

fitness value(s) with the m individuals in the elite pool. 

b) Crossover: Randomly choose two individuals in the population, say S and U, and then perform a 

one-point crossover. Specifically, exchange the elements in the first c (1 ≤ c ≤ J) columns of S and U, 

where c is an integer arbitrarily chosen. Thus, two offspring individuals are produced (as illustrated in Figure 

3). 

 
 

Fig. 3: An illustrative example of crossover operation. 

Two repair operations can be performed if the obtained offing individual is infeasible. One of them, 

namely push operation, delays the assignment of a task until the last one in the schedule has been finished. 

The task 4 in Figure 4 is delayed to the 5
th
 slot by which the truck delivering part 2 has come back. This 

operation can be conducted for each truck sequentially. 

 

Fig. 4: An illustrative example of push operation. 

 

Fig. 5: An illustrative example of add/subtract operation. 
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The other operation, namely add/subtract operation, removes extra tasks randomly and then adds tasks 

required to available slots arbitrarily. In Figure 5, the task 2 in the 4
th
 time slot is dropped and a task 1 is 

added to the 5
th
 time slot. The two operations can be conducted alternately for several times until the 

resulting schedule is feasible. 

c) Mutation: While performing the mutation operation, a new individual is generated by iteratively 

conducting K swap operations. At each iteration, say k1 (k1 = 1, …, K), an element       (1 ≤ j1 ≤ J) in 

Matrix S is randomly selected. Then exchange       with another arbitrarily selected element       (1 ≤ k2 ≤ 

K , 1 ≤ j2 ≤ J). In this manner, a new truck schedule can be created. In case it is infeasible, the repair 

procedure mentioned above is needed. 

4. Computational Experiments 

Computational experiments are performed to test the performance of the heuristic rules and algorithm 

presented in this paper. The parameter values used in the experiments are listed in Table 2. Seven instances 

with different combinations of N, J, and K are generated.  

All solution procedures ar           C++ L             M        ’  V      S      20 9,     the 

experiments are run on a 2.40 GHz PC with 16.0 GB RAM. For the GA algorithm, the population size is set 

to 200, and the number of generations is set to 2000. The crossover rate and mutation rate are set to 0.55 and 

0.05, respectively. Besides, the number of chromosomes contained in the elite pool is set to 40. These 

parameters are determined based on a series of numerical experiments. All instances are solved by using the 

fixed route rule, the sequential arrangement rule, and the GA, respectively. Thus, three schedules are 

generated for each instance. 

Computation results are displayed in Table 3. For each problem instance, the inventory costs resulting 

from the three schedules are shown, as the total transportation cost is a constant and thus be discarded. It 

shows that all the three approaches can solve the truck scheduling problem effectively. Among them, the two 

rule-based approaches produce comparable results, and the GA obtains the best outcomes for all instances. 

On average, using the GA to schedule deliveries can save approximately 70% of total inventory costs than 

applying the two heuristic rules. 

Table 2:  Parameters used in generating problem instances 

Parameter Notation Values 

Number of parts N 3, 4, 5, 8 

Number of time slots J 8, 16 

Number of trucks K 3, 4, 10, 15, 16 

 

Table 3:  Computational results 

(N, J, K) Fixed Route Rule 
Sequential Arrangement 

Rule 
Genetic Algorithm 

(3,8,3) 2840 2680 880 

(3,8,3) 4840 4680 1560 

(4,8,4) 8600 7880 3520 

(5,16,10) 115060 122100 31370 

(5,16,15) 131100 149360 28170 

(8,16,16) 179740 187340 49530 

(8,16,16) 172480 219120 55760 

 

5. Conclusion  
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In this paper, a new truck scheduling problem associated with supplying automobile parts via a point-to-

point network is introduced. An integer programming formulation was proposed to describe the problem. 

Two heuristic rules and one GA were developed, aimed at finding good solutions rapidly. Computational 

experiments were conducted to evaluate the performance of the proposed solution procedures. It was shown 

that all the three approaches can effectively and efficiently generate feasible solutions. Moreover, the GA 

performs significantly better than the two heuristic rules. 

In the future, efforts can be made to look for the optimal combination of the parameters used in GA such 

as population size, crossover rate, and the number of elites. Besides, other metaheuristics and artificial 

intelligent approaches (e.g., simulated annealing, particle swarm optimization, deep reinforcement learning, 

etc.) can be developed. On the other hand, additional restrictions such as time windows of suppliers and 

variable part consumption rates can be incorporated in the model, and solution procedures can be developed 

accordingly. 
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